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8. Cartesian Coordinate System & Functions

8.1. The Cartesian Coordinate System

There are many schemes for referencing points in the plane. Among
all these coordinate systems, the Cartesian Coordinate System is
the most popular and useful.

Figure 1

Begin by drawing two real number lines, perpendicular to
each other, and intersecting at their zeros. One number line is
drawn horizontally, and the other vertically.

The two number lines, called axes, are labeled by some appropriately
chosen symbols; usually the horizontal axis is labeled by the letter x
and the vertical axis is labeled by the letter y. The horizontal axis
is called the x-axis or the axis of abscissas and the vertical axis is
called the y-axis or the axis of ordinates.

Figure 2

The two perpendicular axes subdivide the plane into six sub-
sets in such a way that any given point in the plane is either
(1) on the x-axis, (2) on the y-axis, (3) in the first quadrant,
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(4) in the second quadrant, (5) in the third quadrant, or (6) in the
fourth quadrant. (See Figure 2.)

• Referencing/Plotting Points
Points in the plane are referenced by their position relative to the
two perpendicular axes. We shall not spend a terribly large amount
of time on this topic because you no doubt have plotted many points
before. We shall be content with reviewing some of the definitions and
terminology.

Figure 3

The Method of Referencing a Point. Let P be a point in the
plane. Draw a vertical line passing through the point P and
a horizontal line through P . The vertical line intersects the

x-axis at a certain position a and the horizontal line intersects the
y-axis at a certain position b. The Cartesian coordinates of the
point P is defined as

P ( a, b )

Conversely, given ordered pair of numbers, ( a, b ), there corresponds
one and only one point in the plane. This point is the intersection of
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the two lines obtained by drawing a vertical line passing through a in
the x-axis and a horizontal line passing through the number b on the
y-axis.

Terminology : Let ( a, b ) is the Cartesian Coordinates of the point
P . The number a is called the first coordinate of P , or the x-
coordinate of P , or the abscissa of P ; similarly, b is called the second
coordinate, or the y-coordinate, or the ordinate of P .

• Question. Why do you think we have such terminology as the “axis
of abscissas,” the “axis of ordinates,” the “abscissa of P” and the
“ordinate of P”?

Having defined the method of referencing a point in the plane, the
four quadrants of the plane can be described more precisely.

Quiz. Answer each of the following about the quadrants.
1. What quadrant consists of all points P (x, y ) satisfying x > 0

and y < 0? Quadrant . . .

(a) I (b) II (c) III (d) IV
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2. What quadrant consists of all points P (x, y ) satisfying x < 0
and y > 0? Quadrant . . .

(a) I (b) II (c) III (d) IV
3. What quadrant consists of all points P (x, y ) satisfying x < 0

and y < 0? Quadrant . . .

(a) I (b) II (c) III (d) IV
4. What quadrant consists of all points P (x, y ) satisfying x > 0

and y > 0? Quadrant . . .

(a) I (b) II (c) III (d) IV
EndQuiz.

• The Distance Formula
In the next few paragraphs we take up the problem of computing the
distance between two points in the plane.
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The Distance Formula:

Figure 4

Let P (x1, y1 ) and Q(x2, y2 ) be two points in the
plane, then the distance between P and Q, denoted
by d(P,Q ), is given by

d(P,Q ) =
√
(x1 − x2)2 + (y1 − y2)2 (1)

The validity of equation (1) is based on the Pythagorean Theo-
rem. From Figure 4, we have

[d(P,Q )]2 = |x1 − x2|2 + |y1 − y2|2
= (x1 − x2)2 + (y1 − y2)2,

whence comes equation (1).

Here is a typical ‘beginners’ example that illustrates how to use this
formula.
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Example 8.1. Calculate the distance between the points P (−2, 4)
and Q(3,−1).

Exercise 8.1. (Skill Level 0) In each of the follow, find the distance,
d(P,Q ), between P and Q. Passing is 100%.
(a) P (0, 0) and Q(3,−4) (b) P (−3, 4) and Q(−1,−1)
(c) P (−4, 2) and Q(5, 2) (d) P (−1, 5) and Q(7, 9)

With the distance formula firmly in hand, we can now solve a number
of problems related to distances in the plane.

Exercise 8.2. Below, we define three points P , Q, and R. Determine
whether these three points are the vertices of a right triangle. (Hint :
A triangle is a right triangle if and only if the square of the length of
the longest side is equal to the sum of the squares of the other two
sides.)
(a) P (0, 0), Q(1, 1) and R(2, 0)
(b) P (6,−7), Q(11,−3) and R(2,−2)
(c) P (1, 2), Q(−3, 4) and R(4,−2)
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The distance formula can also be used to test whether one point is
between two others.

Quiz. Let P , Q, and R be three points in the plane. Which of the
following is equivalent to the statement that Q lies “between” P and
R; i.e., Q lies on the straight line segment that connects P and R.
(Hint : Think about the geometry of each equation—draw a picture if
necessary.)
(a) [d(P,R)]2 = [d(P,Q)]2 + [d(Q,R)]2

(b) d(P,R) = d(P,Q) + d(Q,R)
(c) [d(P,Q)]2 = [d(P,R)]2 + [d(R,Q)]2

(d) d(P,Q) = d(P,R) + d(R,Q)

Exercise 8.3. Using the criterion stated in the above Quiz, deter-
mine whether Q is between P and R.
(a) P (1, 3), Q(2, 5) and R(4, 9)
(b) P (−1, 10), Q(2,−5), and R(5,−12)

Exercise 8.4. The three points P (1,−1), Q(5, 0) and R(3, 1) are the
vertices of a triangle. Compute the perimeter of the triangle PQR.
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Exercise 8.5. A particle moves around in the xy-plane. It is known
that at any given time t, the particle has coordinates P (1+t, 3−t). At
what time, t, will the particle be 4 units away from the origin, O(0, 0)?
(Hint : Set up the equation d(P,O) = 4, and solve for t.)

Let us now look at a couple of special cases. Should you go on to Cal-
culus, occasionally you will need to be able to quickly and efficiently
compute the distance between two horizontal points and the distance
between two vertical points. In these two cases, it is not necessary to
use the distance formula in its full generality. Read on.

� Distance between two Horizontally Oriented Points. Let’s begin with
a quick quiz, the answer to which represents criterion for judging
whether two points are horizontally oriented.

Quiz. Let P (x1, y1 ) and Q(x2, y2 ) be points in the plane. The P and
Q are horizontally oriented is equivalent to the condition
(a) x1 = x2 (b) y1 = y2
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Now, let us developed a specialized version the distance formula. Let
P (x1, y1 ) and Q(x2, y2 ) be two horizontally oriented points: Then,

d(P,Q ) =
√
(x1 − x2)2 + (y1 − y2)2

=
√
(x1 − x2)2 � since y1 = y2

= |x1 − x2 | � by (1) of Lesson 2

Distance Between Horizontally Oriented Points: Let P (x1, y1 ) and
Q(x2, y2 ) be two points horizontally oriented points in the plane, i.e.
y1 = y2, then the distance between P and Q, denoted by d(P,Q ), is
given by

d(P,Q) = |x1 − x2| (2)

Comment : Usually, equation (2) is evaluated by taking the abscissa
of the right-most point and subtracting the abscissa of the left-most
point.

Learn to use this specialized formula by answering the questions in
the quiz that follows.



Section 8: Cartesian Coordinate System & Functions

Quiz. Work the solutions out first, then choose the correct response.
Passing is 100%.
1. Are the points (2, 6) and (−4, 6) horizontally oriented?

(a) Yes (b) No
2. Which of the following is the distance between P (3,−9) and

Q(8,−9)?
(a) −11 (b) −5 (c) 5 (d) 11

3. Let P (6,−3) and Q(−3,−3) be given. The value of d(P,Q) is
(a) −9 (b) −3 (c) 3 (d) 9

4. Let P (−5, 2) and Q(−9, 2) be given. The value of d(Q,P ) is
(a) 4 (b) 5 (c) 9 (d) 14

EndQuiz.

� Distance between two Vertically Oriented Points. Let P (x1, y1 ) and
Q(x2, y2 ) be two points in the plane. Then P and Q are vertically
oriented if and only if x1 = x2, that is, if they have the same first
coordinate.
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The Distance Between Vertically Oriented Points: Let P (x1, y1 ) and
Q(x2, y2 ) be two points vertically oriented points in the plane, i.e.
x1 = x2, then the distance between P and Q, denoted by d(P,Q ), is
given by

d(P,Q) = |y1 − y2| (3)

Comments: The distance between two vertically oriented points is the
height of the upper point minus the height of the lower point.

Exercise 8.6. Use the distance formula to derive equation (3).

Exercise 8.7. Calculate the distance between each of the following
sets of points and observe whether each pair of points horizontally or
vertically oriented.
(a) P (1, 2) and Q(1, 9) (b) P (−3, 3) and Q(−3,−4)
(c) P (4, 3) and Q(−3, 3) (d) P (π,−5) and Q(π,−2)
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• The Midpoint of a Line Segment
Let P (x1, y1) and Q(x2, y2) be two points in the plane. Draw a line
segment connecting the point P and Q.

Problem. Calculate the Cartesian coordinates of the midpoint of
the line segment PQ.

Figure 5

Let us approach this problem as follows1: The coordinate x̄
must be halfway between x1 and x2; the coordinate ȳ must be
halfway between y1 and y2. Once we accept this reasoning, we

can deduce
x̄ =

x1 + x2

2
ȳ =

y1 + y2

2
.

(Note: We have used here the midpoint formula for the real number
line.) See Figure 5.

1Here is a brief discussion of an alternate approach.
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Thus the Cartesian coordinates of the midpoint are

M

(
x1 + x2

2
,
y1 + y2

2

)

Let’s elevate this formula to the status of a shadow box.

Midpoint Formula:
Let P (x1, y1 ) and Q(x2, y2 ) be points in the plane. The
coordinates of the midpoint M between P and Q are given
by

M

(
x1 + x2

2
,
y1 + y2

2

)
(4)

Exercise 8.8. (Skill Level 0) Calculate the midpoint between each
of the following pairs of points.
(a) P (−1, 3) and Q(5, 7) (b) P (2, 4) and Q(2,−5)
(c) P (5,−3) and Q(12,−3) (d) P (−1,−1) and Q(4, 2)
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Exercise 8.9. Each pair of points listed below is diametrically op-
posite to each other on a circle. Find the center, C(h, k), and radius,
r, of the circle.
(a) P (1, 2) and Q(−3,−1) (b) P (−1, 4) and Q(0, 0)

8.2. Functions

In the world of Mathematics one of the most common creatures en-
countered is the function. It is important to understand the idea of a
function if you want to gain a thorough understanding of Algebra and
Calculus.

Science concerns itself with the discovery of physical or scientific truth.
In a portion of these investigations, researchers (or engineers) attempt
to discern relationships between physical quantities of interest. There
are many ways of interpreting the meaning of the word “relation-
ships,” but in these lessons we are most often concerned with func-
tional relationships. Roughly speaking, a functional relationship be-
tween two variables is a relationship such that one of the two variables
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has the property that knowledge of it (or knowledge of its value) im-
plies a knowledge of the value of the other variable.

For example, the physical quantity of area, A, of a circle is related
to the radius of that circle, r. Indeed, it is internationally known
that A = πr2—an equation, I’m sure, you have had more than one
occasion to examine in the past. The simple equation A = πr2 sets
forth the principle of a functional relationship: Given knowledge of the
value of one variable (the independent variable), r, then we have total
knowledge of the value of the other variable (the dependent variable),
A. This causal (or deterministic) relationship one variable has with
another variable is the essence of a functional relationship.

This only difference between the example of the previous paragraph
and any other example of a function, either one taken from the applied
fields or one that is of a more “purely abstract” nature, is the way in
which the functional relationship is defined, and the complexity of that
definition. There are many, many ways of defining (or describing) a
functional relationship between one variable (or a set of variables) and
another variable (or another set of variables). Some of these methods
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are rather “natural,” which you will encounter as you continue with
these lessons; others are “unnatural,” but we will not encounter them
at this level of play.

Before we continue with this discussion, perhaps it is best to have a
formalized definition of a function—in the next section.

• The Definition

Definition. Let A be a set and B be a set. A function, f , from A into
B is a rule that associates with each element in the set A a unique
corresponding element in the set B. In this case, we write symbolically,
f :A → B, or A

f→ B.

Definition Notes: The set A is called the domain of the function f .
Typically in Algebra and Calculus, the set A will be an interval of the
real number line R. As a notation, we shall refer to the domain of the
function f by Dom(f).

The set B is called the codomain of f . The set B may not be
the range of the function.
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Let the elements of A are referred to by the letter x, and those of
the set B by y. The symbol x is called the independent variable of
f , and y is called the dependent variable. The independent variable
can take on any value in the domain, Dom(f), of f .

A function f is a rule that associates with each element, x, in
the set A, a unique corresponding element, y, in the set B. The usual
way we define a function is by an equation that states the relationship
between the variable x and the variable y.

For example, let the function f associate the number x with the
number y, where y = x2. We write,

f :x → y where y = x2

or, more simply
f :x → x2

thus,
f : 2 → 4 f :−3 → 9 f : 0 → 0

Where, f : 2 → 4 states that f associates with x = 2 the unique
corresponding number y = 4.
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The above notation is used frequently at higher levels of math-
ematics, at our level, we use the standard functional notation. Rather
than writing f :x → x2, we simply write f(x) = x2.

f(x) = x2 means f :x → x2.

Particular evaluations are carried out as follows:

f(2) = 22 = 4 f(−3) = (−3)2 = 9 f(0) = 02 = 0

More examples are given below.
Given a particular x in Dom(f), y = f(x) is called a value of

the function f . For the function f(x) = x2, since f(2) = 4, we can
say that 4 (y = 4) is a value of f . It should be clear to you that −4
in not a value of the function f(x) = x2.

For any given function, f , some numbers are values of f while
others are not. The set of all values of a given function is called its
range, denoted by Rng(f); thus,

Rng(f) = { y | y is a value of f }
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To be a value, a ‘y’ must be of the form f(x) for some x. Thus,

Rng(f) = { y | y = f(x) for some x in Dom(f) }
For the function f(x) = x2, the range is

Rng(f) = [ 0,+∞ )

Do you understand why?
All the functions that we encounter in Algebra (and most of those
encountered in Calculus) defined using algebraic expression in one
unknown. For example, the expression x2 − 4x + 1 is an algebraic
expression in x. We can use this expression to define a function by

f(x) = x2 − 4x+ 1

Here are a few examples of functions defined this way. This method is
by no means the only way of defining functions. Read these examples
completely and carefully.

Illustration 1. Examples of functions and numerical evaluations.
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(a) Define f by f(x) = x2 + x. Then,

f(3) = 32 + 3 = 12 f(−3) = (−3)2 + (−3) = 6.

(b) Define g by g(x) =
x

x+ 1
. Then,

g(2) =
2

2 + 1
=

2
3

g(− 1
2 ) =

1
2

1
2 + 1

=
1
2
3
2

=
1
3
.

The names of functions are determined by the user, that’s you
and me. I choose a name of g this time.

(c) Define h by h(t) =
√
t. Then,

h(4) =
√
4 = 2 h(9) = 3 h(5) =

√
5.

Now I have changed the letter used to denote the independent
variable. I have used t instead of the traditional x—this causes
no problems I hope? Any letter (or symbol) can be used for the
independent variable, and any letter (or symbol) can be used
for the dependent variable.
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(d) Any symbol you say? How about defining a function W by
W (φ) = φ3. Then,

W (−5) = −125 W (3) = 27 W (
√
2 ) = (

√
2 )3 = 2

√
2.

Here, I have used the Greek letter φ (“phi”) for the name of the
independent variable.

Evaluation Tip. To evaluate a function, such as f(x) = x2 − 2x, at
a particular value of x = −1, first replace the independent variable
x with the number −1, then evaluate the expression. Thus, f(−1) =
(−1)2 − 2(−1) (replace x by −1), then evaluate f(−1) = 1 + 2 = 3.
Note the use of the parentheses: this is necessary because we are
replacing a single letter x by a compound symbol −1. Not to include
these parentheses (1) is mathematically and notationally wrong, and
(2) invites evaluation errors.

Exercise 8.10. Evaluate each of the functions defined below at the
indicated values. Passing is 100%.
(a) f(x) = 2x2 − 3x; f(2), f(−2), f(− 1

2 )
(b) g(s) = s(s+ 1)(s+ 2); g(0), g(1), g(−1), g(−3)
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(c) h(t) =
t

t2 + 1
; h(1), h(−2), h( 1

2 ), h(− 1
2 )

(d) D(w) = w
√
w; D(9); D( 1

9 )

• For those Who want Greater Insight. Models for Functions.
Listed behind this link is a description of several ways in which we
can view a function. These points of view may help you to understand
this important mathematical object.

• The Domain of a Function
In the examples in the previous paragraphs, nothing was mentioned
concerning the domains of the functions considered. In this section
we briefly discuss methods of computing the domain of a function.

The domain of the function defined is either (1) explicitly specified or
is (2) not explicitly specified. (That seems reasonable.)

Illustration 2. Examples of functions with explicitly specified do-
mains.
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(a) Define a function f by

f(x) = x2, x ≥ 1

Here, we are explicitly defining the domain of f to be

Dom(f) = [ 1,+∞ ) = {x | x ≥ 1 }
For this function, f(2) = 4 is defined, but f(0) is not because
x = 0 does not fall into the specified domain.

(b) Define a function g by

g(x) =
x

x2 + 1
, 0 ≤ x < 1

Here, we have specified the domain of g to be

Dom(g) = [ 0, 1 ) = {x | 0 ≤ x < 1 }
Illustration Notes: Such (artificial) restriction of the domains may
arise from physical considerations. Perhaps these functions, f and g
above, are modeling some physical system; within the context of this
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physical system, it only make sense to consider x ≥ 1, in the case of
the function f , and 0 ≤ x < 1 in the case of g.
When the domain of a function at definition time is left unspecified,
that usually means we are to take as the domain the so-called natural
domain of the function.

� The Natural Domain of a function. Given a function y = f(x). The
natural domain of f is the set of all real numbers, x, for which the
value f(x) can be calculated as a real number.

The next example illustrates the reasoning and methods used to cal-
culate the natural domain of a function. Read carefully!

Example 8.2. Compute the natural domain of each of the following.

(a) f(x) = x2 + 3x+ 1 (b) g(x) =
x2

x2 − 3x+ 2
(c) h(x) =

√
x+ 2 (d) p(x) =

√
x2 − 1
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Strategy. Let y = f(x) be a function, where f(x) is some algebraic
expression. The natural domain consists of all x for which . . .

• the denominator (if any) is not equal to zero; and
• any radicands of even roots (if any) are nonnegative.

Here’s another example that incorporates all components of the above
strategy.

Example 8.3. Find the natural domain of f(x) =
√

x

x+ 1
.

Quite typically, the strategy involves setting up some constraints or
conditions on the values of the independent variable in the form of
inequalities. Once you identify these inequalities, you solve them (pos-
sibly using the Sign Chart Method). The natural domain is then the
set of all values of the independent variable that satisfy all the con-
straints or conditions.

Exercise 8.11. Compute the natural domain of each of the following.

(a) f(x) = |x − 1| (b) g(x) =
3x

x2 + 2x − 8
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(c) h(x) =
1√

x(x+ 2)
(d) p(x) =

√
x

x2 − 1

• Points of Intersection of Curves
We have seen in the previous section that determining the natural
domain of a functions oftimes require the setting up and solving of
inequalities. To determine where two curves intersect, if at all, we must
be able to set up and solve equations. This is why the basic mechan-
ics of solving inequalites and equations are so important—equations
and inequalities are the natural way in which we ask questions and
the techniques of solutions are the way we are able to answer these
questions.

� Determining the x-intercept. Let y = f(x) be a function. The x-
intercept, if there is one, is that value of x such that f(x) = 0. As
you know, every function has a graph—graphing will be taken up in
Lesson 9—and in terms of the graph the x-intercept is the location
on the x-axis where the graph crosses the x-axis.
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Procedure. To find the x-intercept(s) of the function y = f(x), set up
the equation

f(x) = 0 (5)

and solve for x.

Exercise 8.12. Find the x-intercept(s), if any, of each of the follow-
ing functions.
(a) f(x) = 4x − 1 (b) f(x) = x2 − 3x+ 2
(c) f(x) = x3 + 6x2 ++8x (d) f(x) = x2 + x+ 1
(e) f(x) = 2x2 − x − 1 (f) f(x) = x2 + x − 3

Exercise 8.13. What does the problem of finding the x-intercept of
a function have to do with the title, “Points of Intersection of Curves,”
of this section?

� Determining the intersection of two Curves. Consider the two func-
tions y = f(x) and y = g(x). We wish to find all points, if any, on the
intersection of the graphs of f and g.
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Let (x0, y0) be a point that is on both graphs of f and g. This means

f(x0) = y0 and g(x0) = y0.

At this point, we have f(x0) = y0 = g(x0). This represents a criterion
for finding the points of interection of two graphs.

Procedure. Let y = f(x) and y = g(x) be two function. Set up the
equation

f(x) = g(x) (6)

and solve for x.

Finding the points of intersection is essentially a problem in solving
equations.

Example 8.4. Find the points of interection beween
(a) f(x) = 3x+ 2 and g(x) = 5x − 4
(b) f(x) = x2 − 3x+ 1 and g(x) = 2x − 5
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Notice that the points of intersection can be calculated without ref-
erence to the graph of the functions. At our level of play, finding the
points of intersection is purely an exercise in algebra.

Exercise 8.14. Find the cartesian coordinates of the points of inter-
sections of each of the following pairs of functions.
(a) f(x) = 6x+ 3 and g(x) = 2x − 7
(b) f(x) = x+ 3 and g(x) = 2 − 8x
(c) f(x) = x2 + 7x − 1 and g(x) = 4x − 3

Now for some exercises that require the use of the Quadratic For-
mula.

Exercise 8.15. Find the abscissas of intersection of each of the fol-
lowing pairs of functions.
(a) f(x) = 2x2 − 5x+ 2 and g(x) = x+ 3
(b) f(x) = x2 + 4x − 1 and g(x) = 1 − 4x − x2

(c) f(x) = 3x2 + 1 and g(x) = x2 − 5x
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Some curves do not intersect. Investigate these kind.

Exercise 8.16. Verify algebraically that each pair of functions do
not intersect.
(a) f(x) = 4x − 2 and g(x) = 4x+ 12
(b) f(x) = 2x2 + 3 and g(x) = x2 − 1
(c) f(x) = x2 + 2x+ 2 and g(x) = x+ 1
(d) f(x) = x2 − 2x − 4 and g(x) = 4x2 − 3

We have come to the end of Lesson 8. Congratulations of reaching
this far. In Lesson 9, we take up the topics of linear and quadratic
functions as well as some graphing topics.



Solutions to Exercises

8.1. Solutions: I’ll just use equation (1).
(a) P (0, 0) and Q(3,−4)

d(P,Q) =
√
(0 − 3)2 + (0 − (−4))2 =

√
9 + 16 =

√
25 = 5

(b) P (−3, 4) and Q(−1,−1)

d(P,Q) =
√
(−3 − (−1))2 + (4 − (−1))2

=
√
(−2)2 + 52 =

√
4 + 25

=
√
29

(c) P (−4, 2) and Q(5, 2)

d(P,Q) =
√
(−4 − 5)2 + (2 − 2)2

=
√
(−9)2 = | − 9| � Recall,

√
x2 = |x|.

= 9



Solutions to Exercises (continued)

(d) P (−1, 5) and Q(7, 9)

d(P,Q) =
√
(−1 − 7)2 + (5 − 9)2

=
√
(−8)2 + (−4)2 =

√
64 + 16

=
√
80 = 4

√
5

Exercise 8.1.



Solutions to Exercises (continued)

8.2. Solutions:
(a) Given P (0, 0), Q(1, 1) and R(2, 0), does PQR form a right tri-

angle?
Solution: Verify the following calculation:

d(P,Q) =
√
2 d(P,R) = 2 d(Q,R) =

√
2

Note that PR is the longest side and

d(P,R)2 = d(P,Q)2 + d(Q,R)2

Thus, the points P , Q, and R form a right triangle.
(b) Given P (6,−7), Q(11,−3) and R(2,−2), does PQR form a right

triangle?
Solution: Verify the following calculations:

d(P,Q) =
√
41 d(P,R) =

√
41 d(Q,R) =

√
82

The side QR is the longest side. Note that

d(Q,R)2 = d(P,Q)2 + d(P,R)2



Solutions to Exercises (continued)

Thus, the points P , Q, and R form a right triangle.
(c) P (1, 2), Q(−3, 4) and R(4,−2)

Solution: Verify the following calculations:

d(P,Q) =
√
20 = 2

√
5 d(P,R) = 5 d(Q,R) =

√
85

The side QR is the longest side. Note that

d(Q,R)2 = 85 �= 45 = 20 + 25 = d(P,Q)2 + d(P,R)2

The square of the longest side does not equal to the sum of the
squares of the other two sides; therefore, P , Q and R do not
form a right triangle.

Exercise 8.2.



Solutions to Exercises (continued)

8.3. Solutions:
(a) Given P (1, 3), Q(2, 5) and R(4, 9), is Q between P and R?

Solution:

d(P,Q) =
√
5 d(P,R) =

√
45 d(Q,R) =

√
20

(Verify these calculations.) Is it true that

d(P,R) ?= d(P,Q) + d(Q,R)
√
45 ?=

√
5 +

√
20 � Not obvious! Simplify!

3
√
5 ?=

√
5 + 2

√
5

They are equal! Indeed, Q does lie between P and R.
(b) Given P (−1, 10), Q(2,−5), and R(5,−12), is Q between P and

R?
Solution:

d(P,Q) =
√
234 d(P,R) =

√
520 d(Q,R) =

√
58



Solutions to Exercises (continued)

(Verify these calculations.) Is it true that

d(P,R) ?= d(P,Q) + d(Q,R)
√
520 ?=

√
234 +

√
58

Make a calculator calculation to see that
√
520 �=

√
234 +

√
58

In this case, the left hand side is not equal to the right hand
side. Conclusion: Q is not between P and R.

Exercise 8.3.



Solutions to Exercises (continued)

8.4. Solution: The perimeter of a triangle is the sum of the lengths
of its sides.

Verify the following calculations, and e-mail if I am in error.

d(P,Q) =
√
17 d(Q,R) =

√
5 d(R,P ) = 2

√
2

The perimeter is

perimeter =
√
17 +

√
5 + 2

√
2

Question. Is this triangle a right-triangle?
(a) Yes (b) No

Exercise 8.4.

mailto:dpstory@uakron.edu


Solutions to Exercises (continued)

8.5. Solution: I’ll take my own hint—I hope you did too.

Given: P (1 + t, 3 − t) and O(0, 0)

d(P,O) =
√
(1 + t)2 + (3 − t)2 � distance formula

We want d(P,O) = 4, therefore,

Solve for t:
√
(1 + t)2 + (3 − t)2 = 4

Square both sides of the equation, expand and combine.

(1 + t)2 + (3 − t)2 = 16 � square both sides

(1 + 2t+ t2) + (9 − 6t+ t2) = 16 � expand

2t2 − 4t+ 10 = 16 � combine

t2 − 2t+ 5 = 8 � divide both sides by 2

t2 − 2t − 3 = 0 � subtract 18 from both sides



Solutions to Exercises (continued)

We now solve the equation t2 − 2t − 3 = 0. We could use the Qua-
dratic Formula; however, this is an equation that can be solved by
factoring:

t2 − 2t − 3 = 0

(t − 3)(t+ 1) = 0
Therefore,

t = −1, 3

Presentation of Solution: t = −1, 3

There are actually two times at which the particle is exactly 4 units
away from the origin. Exercise 8.5.



Solutions to Exercises (continued)

8.6. Demonstration: Since the points are vertically oriented, x1 = x2:

d(P,Q ) =
√
(x1 − x2)2 + (y1 − y2)2

=
√
(y1 − y2)2 � since x1 = x2

= | y1 − y2 | � by (1) of Lesson 2

Exercise 8.6.



Solutions to Exercises (continued)

8.7. Solution: We use equation (3) throughout these solutions.
(a) Given: P (1, 2) and Q(1, 9), compute d(P,Q). The first coordi-

nates are equal; therefore, these are vertically oriented points.
The distance between them is the upper most minus the lower
most:

d(P,Q) = |2 − 9| = 9 − 2 = 7

(b) Given: P (−3, 3) and Q(−3,−4), compute d(P,Q). These points
are vertically oriented because the x-coordinates are equal.

d(P,Q) = |3 − (−4)| = 7

(c) Given: P (4, 3) and Q(−3, 3), compute d(P,Q). Here, the second
coordinates are equal; these are horizontally oriented points.

d(P,Q) = |4 − (−3)| = 7

(d) Given: P (π,−5) and Q(π,−2), compute d(P,Q). Vertically ori-
ented points.

d(P,Q) = | − 5 − (−2)| = 3



Solutions to Exercises (continued)

What do you know about that, they’re all 7 units apart! Oops! All
but one—how did that one get in there! Exercise 8.7.



Solutions to Exercises (continued)

8.8. Solutions: Hopefully you used formula (4).
(a) Find the midpoint between P (−1, 3) and Q(5, 7).

M

(−1 + 5
2

,
3 + 7
2

)
= M(2, 5)

(b) Find the midpoint between P (2, 4) and Q(2,−5).

M

(
2 + 2
2

,
4 + (−5)

2

)
= M(2,− 1

2 )

Did you note that these two points were vertically oriented? You
did, didn’t you.

(c) Find the midpoint between P (5,−3) and Q(12,−3).

M

(
5 + 12

2
,
−3 + (−3)

2

)
= M( 17

2 ,−3)

These were two horizontally oriented points.



Solutions to Exercises (continued)

(d) Find the midpoint between P (−1,−1) and Q(4, 2).

M

(−1 + 4
2

,
−1 + 2

2

)
= M( 3

2 ,
1
2 )

Exercise 8.8.



Solutions to Exercises (continued)

8.9. Solutions:
(a) Find the center and radius of the circle containing the points

P (1, 2) and Q(−3,−1), which are diametrically opposite.
Calculation of the Center : The radius is the midpoint of the line
segment PQ, since the points lie of the same diameter.

C
(1 + (−3)

2
,
2 + (−1)

2

)
= C

(
−1,

1
2

)
� midpoint formula

Radius Calculation: The radius is one-half the diameter. Thus,
from the distance formula, we have

r =
1
2
d(P,Q) =

1
2

√
(1 − (−3))2 + (2 − (−1))2

=
1
2

√
42 + 32 =

1
2

√
25 =

1
2

· 5 = 5
2
.

Presentation of Answer :

Center: C
(
−1,

1
2

)
Radius: r =

5
2



Solutions to Exercises (continued)

(b) Find the center and radius of the circle containing the points
P (−1, 4) and Q(0, 0), which are diametrically opposite.
Calculation of the Center : Again, the center is midway between
the endpoints of any of its diameters.

C
(−1

2
,
4
2

)
= C

(
−1
2
, 2

)
� midpoint formula

Calculation of the radius: The radius is one-half the diameter.
By the distance formula, we have

r =
1
2
d(P,Q) =

1
2

√
(−1)2 + 42 =

1
2

√
17.

Presentation of Answers:

Center: C
(
−1
2
, 2

)
Radius: r =

1
2

√
17

Exercise 8.9.



Solutions to Exercises (continued)

8.10. Solutions: Just use the replacement technique. Be sure to verify
these calculations.
(a) Given f(x) = 2x2 − 3x; evaluate f(2), f(−2), f(− 1

2 ).

f(2) = 2 · 22 − 3 · 2 = 2

f(−2) = 2(−2)2 − 3(−2) = 14

f(− 1
2 ) = 2(− 1

2 )
2 − 3(− 1

2 ) = 2

(b) Given g(s) = s(s+ 1)(s+ 2); evaluate g(0), g(1), g(−1), g(−3).

g(0) = 0

g(1) = (1 + 1)(1 + 2) = 6

g(−1) = 0

g(−3) = (−3)(−3 + 1)(−3 + 2)

= −3(−2)(−1) = −6



Solutions to Exercises (continued)

(c) Given h(t) =
t

t2 + 1
; evaluate h(1), h(−2), h( 1

2 ), h(− 1
2 ).

h(1) =
1

1 + 1
=

1
2

h(−2) =
−2

(−2)2 + 1
=

−2
4 + 1

= −2
5

h( 1
2 ) =

1
2

( 1
2 )

2 + 1
=

1
2

1
4 + 1

=
1
2
5
4

=
4

2 · 5 =
4
10

=
2
5

h(− 1
2 ) =

− 1
2

(− 1
2 )

2 + 1
= −

1
2

1
4 + 1

= −2
5

(d) Given D(w) = w
√
w; evaluate D(9); D( 1

9 ).

D(9) = 9
√
9 = 9 · 3 = 27 D( 1

9 ) =
1
9

√
1
9 = 1

9 · 1
3 = 1

27

Exercise 8.10.



Solutions to Exercises (continued)

8.11. Solution to: (a) Find the domain of f(x) = |x − 1|. Here, the
natural domain is all of R, the real number line.

Dom(f) = R.

This is because there are no constraints on the value of x. For any x
we can calculate x − 1 and then calculate its absolute value |x − 1|.



Solutions to Exercises (continued)

Solution to (b) Find the domain of g(x) =
3x

x2 + 2x − 8
. In this prob-

lem, we just must make sure the denominator is never equal to zero.

Constraints on domain: x2 + 2x − 8 �= 0

To identify these x’s, we find where x2 + 2x − 8 = 0.

Solve: x2 + 2x − 8 = 0 � given

(x+ 4)(x − 2) = 0 � factor

x = −4, 2 � the solutions

Presentation of Solution:

Dom(g) = {x | x2 + 2x − 8 �= 0 } � initial description

= {x | x �= −4 and x �= 2 } � set notation

= (−∞,−4) ∪ (−4, 2) ∪ (2,+∞) � interval notation



Solutions to Exercises (continued)

Solution to (c) Find the domain of h(x) =
1√

x(x+ 2)
. Based on the

strategy, we see there are a number of constraints on the values of x:

x �= 0 x �= −2 x(x+ 2) ≥ 0

These three can be summarized by a single inequality:

Constraints on domain: x(x+ 2) > 0

We use the Sign Chart Method to analyze x(x+ 2).
The Sign Chart of x(x+ 2)

−2
x+ 2

0
x

−2 0
x(x+ 2)

legend : • negative (−)
• positive (+)



Solutions to Exercises (continued)

Presentation of Solution:

Dom(h) = {x | x(x+ 2) > 0 } � initial description

= {x | x < −2 or x > 0 } � set notation

= (−∞,−2) ∪ (0,+∞) � interval notation



Solutions to Exercises (continued)

Solution to (d) Find the domain of p(x) =
√

x

x2 − 1
. From the basic

strategy, we see that
x

x2 − 1
≥ 0 x2 − 1 �= 0

Realizing that x2 − 1 �= 0 is equivalent to x �= −1 and x �= 1 is see . . .

Constraints on domain:
x

x2 − 1
≥ 0 x �= −1 x �= 1

Begin by doing a Sign Chart Analysis on
x

x2 − 1
.

The first step is to factor completely.
x

x2 − 1
=

x

(x − 1)(x+ 1)

It is to this expression that we now apply the method.



Solutions to Exercises (continued)

The Sign Chart of
x

(x − 1)(x+ 1)

0
x

−1
x+ 1

1
x − 1

−1 0 1

x

(x − 1)(x+ 1)
legend : • negative (−)

• positive (+)
Taking the blue line as our solution, and keeping in mind that x �= −1
and x �= 1 we get

Dom(p) = {x | x

x2 − 1
≥ 0, x �= −1, x �= 1 } � initial description

= {x | −1 < x ≤ 0 or x > 1 } � set notation

= (−1, 0] ∪ (1,+∞) � interval notation

Exercise 8.11.



Solutions to Exercises (continued)

8.12. Solutions:
(a) f(x) = 4x − 1

Set up: f(x) = 0
4x − 1 = 0 � substitute

Solve: 4x = 1 � add 1 to both sides

x =
1
4

� divide by 4

Presentation of Answer : The x-intercept is x =
1
4

(b) f(x) = x2 − 3x+ 2
Set up: f(x) = 0

x2 − 3x+ 2 = 0 � substitute

Solve: (x − 2)(x − 1) = 1 � factor

x = 1, 2 � solved!

Presentation of Answer : The x-intercepts are x = 1, 2



Solutions to Exercises (continued)

(c) f(x) = x3 + 6x2 ++8x
Set up: f(x) = 0

x3 + 6x2 + 8x = 0 � substitute

Solve: x(x+ 2)(x+ 4) = 1 � factor

x = 0, −2, −4 � solved!

Presentation of Answer : The x-intercepts are x = 0, −2, −4

(d) f(x) = x2 + x+ 1
Set up: f(x) = 0

x2 + x+ 1 = 0 � substitute (quadratic equation)

Solve: 12 − 4(1)(1) < 0 � negative discriminant

No Solutions

Presentation of Answer : The function does not cross the x-axis.



Solutions to Exercises (continued)

(e) f(x) = 2x2 − x − 1
Set up: f(x) = 0

2x2 − x − 1 = 0 � substitute

Solve: (−1)2 − 4(2)(−1) = 9 > 0 � positive discriminant

x =
1 ± √

9
4

� quadratic formula

=
1 ± 3
4

� simplify

= − 1
2 , 1

Note: This equation could have also been solved by factoring
the left-hand side.

Presentation of Answer : The x-intercepts are x = −1
2
, 1



Solutions to Exercises (continued)

(f) f(x) = x2 + x − 3
Set up: f(x) = 0

x2 + x − 3 = 0 � substitute

Solve: 12 − 4(1)(−3) = 13 > 0 � positive discriminant

x =
−1 ± √

13
2

� quadratic formula

Presentation of Answer : The x-intercepts are x =
−1 ± √

13
2

Exercise 8.12.



Solutions to Exercises (continued)

8.13. Answer : The x-intercept of a function y = f(x) is the inter-
section the graph of f and the x-axis. The x-axis is the graph of the
function g(x) = 0. Thus the x-axis is the intersection of two curves:
y = f(x) and g(x) = 0. Exercise 8.13.



Solutions to Exercises (continued)

8.14. Solutions: Hopefully, you used standard procedures.
(a) Find points of intersection: f(x) = 6x+ 3 and g(x) = 2x − 7.

Set up: f(x) = g(x) � equate ordinates

6x+ 3 = 2x − 7 � substitute

Solve: 4x = −10 � add −2x − 3 both sides

x = − 10
4 � divide by 4

= − 5
2 � done!

When x = − 5
2 , f(− 5

2 ) = 6(− 5
2 ) + 3 = −12.

Presentation of Answer : P (− 5
2 ,−12 )

(b) Find points of intersection: f(x) = x+ 3 and g(x) = 2 − 8x.

Set up: f(x) = g(x) � equate ordinates

x+ 3 = 2 − 8x � substitute

Solve: 9x = −1 � add 8x − 3 both sides

x = − 1
9 � divide by 9



Solutions to Exercises (continued)

When x = − 1
9 , f(− 1

9 ) = − 1
9 + 3 = 26

9 .

Presentation of Answer : P (− 1
9 ,

26
9 )

(c) Find points of intersection: f(x) = x2+7x−1 and g(x) = 4x−3.

Set up: f(x) = g(x) � equate ordinates

x2 + 7x − 1 = 4x − 3 � substitute

Solve: x2 + 3x+ 2 = 0 � add −4x + 3 both sides

(x+ 1)(x+ 2) = 0 � factor

x = −1, −2 � done!

Calculation of Ordinates: When x = −1, y = g(2) = −7.
When x = −2, y = g(3) = −11.

Presentation of Answer :

Points of Intersection: P1(−1,−7 ), P2(−2,−11 )

Exercise 8.14.



Solutions to Exercises (continued)

8.15. Solutions: We use standard procedures around here . . . how
about you?
(a) Find points of intersection: f(x) = 2x2−5x+2 and g(x) = x+3.

Set up: f(x) = g(x) � equate ordinates

2x2 − 5x+ 2 = x+ 3 � substitute

Solve: 2x2 − 6x − 1 = 0 � add −x − 3 both sides

(−6)2 − 4(2)(−1) = 44 > 0 � pos. discrim.

x =
6 ± √

44
4

� Quadratic formula

=
3 ± √

11
2

These two curves intersect at x =
3 − √

11
2

,
3 +

√
11

2



Solutions to Exercises (continued)

(b) Find points of intersection: f(x) = x2 + 4x − 1 and g(x) =
1 − 4x − x2.

Set up: f(x) = g(x) � equate ordinates

x2 + 4x − 1 = 1 − 4x − x2
� substitute

Solve: 2x2 + 8x − 2 = 0 � add −1 + 4x + x2

82 − 4(2)(−2) = 80 > 0 � pos. discrim.

x =
−8 ± √

80
4

� Quadratic formula

=
−8 ± 4

√
5

4
= −2 ±

√
5

These two curves intersect at x = −2 −
√
5,−2 +

√
5



Solutions to Exercises (continued)

(c) Find points of intersection: f(x) = 3x2 + 1 and g(x) = x2 − 5x.

Set up: f(x) = g(x) � equate ordinates

3x2 + 1 = x2 − 5x � substitute

Solve: 2x2 + 5x+ 1 = 0 � add −1 + 4x + x2

52 − 4(2)(1) = 17 > 0 � pos. discrim.

x =
−5 ± √

17
4

� Quadratic formula

These two curves intersect at x =
−5 − √

17
4

,
−5 +

√
17

4

Exercise 8.15.



Solutions to Exercises (continued)

8.16. Solutions: Follow the procedure.
(a) f(x) = 4x − 2 and g(x) = 4x+ 12

Set up: f(x) = g(x) � equate ordinates

4x − 2 = 4x+ 12 � substitute

Solve: 0 = 14 � add −4x + 2 both sides

The equation 0 = 14 has no solution; i.e., no value of x can
satisfy the equation 0 = 14. Therefore, these two curves do not
intersect.

(b) f(x) = 2x2 + 3 and g(x) = x2 − 1.

Set up: f(x) = g(x) � equate ordinates

2x2 + 3 = x2 − 1 � substitute

Solve: x2 = −4 � add −x2 + 1 both sides

The equation x2 = −4 has no solutions; therefore, these two
curves do not intersect.



Solutions to Exercises (continued)

(c) f(x) = x2 + 2x+ 2 and g(x) = x+ 1

Set up: f(x) = g(x) � equate ordinates

x2 + 2x+ 2 = x+ 1 � substitute

Solve: x2 + x+ 1 = 0 � add −x − 3 both sides

(1)2 − 4(1)(1) = −3 < 0 � negative discriminant

A negative discriminant (b2−4ac < 0) implies that the equation
has not solution; therefore, these two equations do not intersect.

(d) f(x) = x2 − 2x − 4 and g(x) = 4x2 − 3

Set up: f(x) = g(x) � equate ordinates

x2 − 2x − 4 = 4x2 − 3 � substitute

Solve: −3x2 − 2x − 1 = 0 � add −4x2 + 3

(−2)2 − 4(−3)(−1) = −8 < 0 � negative discriminant

A negative discriminant implies the equation has no solution.
Exercise 8.16.



Solutions to Examples

8.1. Solution:
P : (x1, y1) = (−2, 4)

Q : (x2, y2) = (3,−1)

We take the difference in the first coordinates and the difference in
the second coordinates.

x1 − x2 = −2 − 3 = −5

y1 − y2 = 4 − (−1) = 4 + 1 = 5

We now take the sum of the squares of these two:

(x1 − x2)2 + (y1 − y2)2 = (−5)2 + 52 = 25 + 25 = 50.

Finally, we take the square root of this result:

d(P,Q) =
√
(x1 − x2)2 + (y1 − y2)2 =

√
50 = 5

√
2

Presentation of Solution: d(P,Q) = 5
√
2



Solutions to Examples (continued)

Of course, this process can be accelerated once you fully understand
the computational steps. Example 8.1.



Solutions to Examples (continued)

8.2. Solution to: (a) Define f(x) = x2+3x+1. The natural domain is
the set of all real numbers for which the value of f(x) = x2+3x+1 can
be computed as a real number. For any real number x, the expression
x2 + 3x+ 1 evaluates to a real number. Therefore, we deduce,

Dom(f) = R = (−∞,+∞)

Solution to: (b) Define g(x) =
x2

x2 − 3x+ 2
. The numerator and de-

nominator always evaluate to a real number; however, if the denom-
inator evaluates to zero, the quotient is not a real number. Thus, we
can say that

Dom(g) = {x | x2 − 3x+ 2 �= 0 }
This should not be considered to be a satisfactory characterization of
the domain of g though.



Solutions to Examples (continued)

First find where x2 − 3x+ 2 = 0, and reason from there. Solve

x2 − 3x+ 2 = 0 � given

(x − 1)(x − 2) = 0 � factor

x = 1, 2 � solve

Therefore,

Dom(g) = {x | x2 − 3x+ 2 �= 0 }
= {x | x �= 1, x �= 2, } � set notation

= (−∞, 1) ∪ (1, 2) ∪ (2,+∞) � interval notation

Solution to: (c) Define h(x) =
√
x+ 2. For any x, x + 2 evaluates to

a real number, but for
√
x+ 2 to evaluate to a real number we must

have x+ 2 ≥ 0. Thus,

Dom(h) = {x | x+ 2 ≥ 0 }



Solutions to Examples (continued)

Again, we should not be satisfied with this formulation. We next solve
the inequality:

x+ 2 ≥ 0 =⇒ x ≥ −2

Thus,
Dom(h) = {x | x ≥ −2 } = [−2,+∞)

Solution to: (d) Define p(x) =
√
x2 − 1. In order for p(x) to evaluate

to a real number, we require x2 − 1 ≥ 0 and x �= 0. Thus,

Dom(p) = {x | x2 − 1 ≥ 0 }
We need to solve the inequality x2 − 1 ≥ 0. To do this, we use the
Sign Chart Method originally discussed in Lesson 7. (Actually, this
method really isn’t needed for this simple inequality. We could solve
as follows:

x2 − 1 ≥ 0 =⇒ x2 ≥ 1 =⇒ |x| ≥ 1,

but we shall use the Sign Chatr Method in any case, just to remind
you of this method.)



Solutions to Examples (continued)

We begin by factoring completely the left-hand side (which is a dif-
ference of squares):

(x+ 1)(x − 1) ≥ 0

The Sign Chart of (x+ 1)(x − 1)

−1
x+ 1

1
x − 1

−1 1
(x+ 1)(x − 1)

legend : • negative (−)
• positive (+)

Therefore, the solution to the inequality x2 − 1 ≥ 0 is

(−∞,−1 ] ∪ [ 1,+∞ )

But the solution to this inequality is the natural domain of p. Thus,

Dom(p) = (−∞,−1 ] ∪ [ 1,+∞ )



Solutions to Examples (continued)

Notice how all the techniques of algebra (Lessons 1–7) are used:
factoring, solving inequalities, interval notation and so on.

This is the discouraging and challanging thing about mathematics:
To solve any given problem, we must call on our entire history of
experiences in mathematics. This is why it is so important for us to
try to master each of the little steps we take toward our final goals.

Example 8.2.



Solutions to Examples (continued)

8.3. Solution: Consider f(x) =
√

x

x+ 1
. Based on the above strat-

egy, we see that

Dom(f) =
{
x | x �= −1 and

x

x+ 1
≥ 0

}

The first condition, x �= −1, avoids having zero in the denominator (we
exclude x = −1 from the domain); the second condition is necessary
for the radicand to be nonnegative. (The square root of a nonnegative
number is a real number, whereas the square root of a negative number
is a complex number. We don’t want to work with complex numbers
at this time.)

As you can see, I’ve simply translated the strategy into a series of
inequalities. We solve the inequality

x

x+ 1
≥ 0

first using the Sign Chart Methods.



Solutions to Examples (continued)

The Sign Chart of
x

x+ 1

−1
x+ 1

0
x

−1 0

x

x+ 1
legend : • negative (−)

• positive (+)
Therefore,

x

x+ 1
≥ 0 =⇒ x ≤ −1 or x ≥ 0.

But, we also have the condition x �= −1; this changes the above solu-
tion slightly to

x < −1 or x ≥ 0.

Presentation of Answer :

Dom(f) = (−∞,−1) ∪ [0,+∞)



Solutions to Examples (continued)

Example 8.3.



Solutions to Examples (continued)

8.4. Solutions: We follow the standard procedures.
(a) Find the points of intersection of f(x) = 3x+2 and g(x) = 5x−4.

Set up: f(x) = g(x) � equate ordinates

3x+ 2 = 5x − 4 � substitute

Solve: −2x = −6 � add −5x − 2 to both sides

x = 3 � divide by 3

At x = 3, f(3) = 3(3) + 2 = 11. Thus, ( 3, 11 ) is the point of
intersection.
Presentation of Solution: Intersection Point(s): P ( 3, 11 )



Solutions to Examples (continued)

(b) Find intersection points of f(x) = x2−3x+1 and g(x) = 2x−5.

Set up: f(x) = g(x) � equate ordinates

x2 − 3x+ 1 = 2x − 5 � substitute

Solve: x2 − 5x+ 6 = 0 � add −2x + 5 both sides

(x − 2)(x − 3) = 0 � factor

x = 2, 3 � done!

Calculation of Ordinates: When x = 2, y = g(2) = −1.
When x = 3, y = g(3) = 1.

Presentation of Answer :

Points of Intersection: P1( 2,−1 ), P2( 3, 1 )

Example 8.4.



Important Points



Why Abscissa and Ordinate?

This terminology enables us to refer to the horizontal and vertical axes
(and the first and second coordinates) in a manner that is independent
of the labeling of the axis. Sometimes the axes are labeled by using
other letters such as s, t, u or v; in these cases, when we discuss the
x-axis, for example, we may not have an x-axis.

Of course, the letters x and y are symbols representing the horizontal
and vertical axes. Whatever we say about the “x-axis” we are saying
about the horizontal axis, whatever its name.

Sometimes it is convenient to refer to the axes without referring to a
specific coordinate axis label. Important Point



Important Points (continued)

The correct answer is (b): Q is between P and R if and only if the
distance from P to R equals the combined distances from P to Q and
Q to R. This statement is summarized in the equation

d(P,R) = d(P,Q) + d(Q,R).

Comments: Statements (a) and (c) imply the three points form a
right triangle . . . that’s not what we want. Statement (d) means R is
between P and Q . . . close but not what we wanted either.

To understand the solution, draw a picture of three colinear points in
the plane. Label the two extreme points P and R and the one between
them Q. Observe that d(P,R) = d(P,Q) + d(Q,R).

To understand my comments, draw pictures in the plane to reflect
each alternative. Important Point



Important Points (continued)

Solutions to the Quiz. The basic tool is the horizontal distance
formula (2).

1. Yes. Since the ordinates of the two points (2, 6) and (−4, 6) are
equal, this means, by (2), they are horizontally oriented.

2. Answer (c). The distance between the points P (3,−9) and
Q(8,−9) is

d(P,Q) = |x1 − x2| = |3 − 8| = | − 5| = 5

3. Answer (d). The distance between the points P (6,−3) and
Q(−3,−3) is

d(P,Q) = |x1 − x2| = |6 − (−3)| = |6 + 3| = 9

Notice the use of the parentheses to properly evaluate the for-
mula.

4. Answer (a). The distance between the points P (−5, 2) and
Q(−9, 2) is

d(Q,P ) = |x1 − x2| = | − 5 − (−9)| = | − 5 + 9| = |9 − 5| = 4



Important Points (continued)

Again, note the use of parentheses to properly evaluate the for-
mula. Of course, d(P,Q) = d(Q,P )—I hope that didn’t bother
you.

Did you get 100%? I hope so. Important Point
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Let the Cartesian coordinates of M be denoted by M(x̄, ȳ). We can
compute the values of x̄ and ȳ by simply describing the geometric
properties of M :

d(P,Q) = d(P,M) + d(M,Q) � M is between P and Q

d(P,M) = 1
2d(P,Q) � M is halfway between

We have two equations and two unknowns (x̄ and ȳ), we can solve for
x̄ and ȳ. However, this method is rather messy.

The enthusiastic student can pursue this train of thought.
Important Point
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Models for Functions.
In this section we present different ways of thinking about functions
that may be of help to you.

� A Function as a Mapping.
One traditional way of looking at a function is as a mapping or a
transformation. Let f :A → B be a function, and let x ∈ A. As dis-
cussed above, y = f(x) is the value of the function at x. We can also
look upon f as a mapping or transformation: f maps x onto y, or, y
is the image of x under f .

This interpretation is one of the origins of the notation introduced
above:

x
f�→ y.

Try to get the feeling for this interpretation. Imagine a bunch of arrows
pointing from elements x in the set A to elements y in the set B. The
arrows point from each x to the corresponding value of y, as the “arrow
notation” above suggests. When we see x we immediately think of its



Important Points (continued)

corresponding value f(x). The Venn Diagram, described next, is a
more visual representation.

� Venn Diagram of a Function.

Figure I-1

In Figure I-1, a pictorial representation of a function (map-
ping, transformation) is given. This graph represents f as it
maps or transforms a typical element x from the domain set

A into the co-domain set B. The image of x under this map, f , is de-
noted by y in the figure. Visualize a function as a bunch of “arrows”
pointing from set A into set B. The tail of a typical arrow is at x, and
the arrow “points” to the corresponding y-value.

This model is very useful in understanding functions and various op-
erations performed on functions (such as composition of functions).

Figure I-2

To further illustrate the point, Figure I-2 depicts a relation
that is not a function. A function is a rule that associates
with each value x is a certain domain set, a corresponding

unique y-value. A rule that associates with at least one x more than
one corresponding y-value would not be a function—as illustrated



Important Points (continued)

in Figure I-2. Observe that associated with x is two corresponding
values—labeled y and z.

As a particular example of this, consider the equation: x2 + y2 = 1.
For x = 0, there are two values of y that satisfy this equation: y = 1
and y = −1. This equation does not define, therefore, y as a function
of x. (Visualize two arrow coming out of x = 0, one pointing to y = 1
and the other pointing to y = −1.

� A Function as a Black Box.
This interpretation of function is often associated with the engineering
world. A function is like a machine (a black box). We have a machine
(a black box) that takes input into it, and, as a result, yields output.
The black box is the function, the input are the values in the domain
of the function, and the output of the box (function) are the values
in the range of the function.

x −→ function −→ y.

Actually, this looks more like a white box to me :={).
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A black box you are familiar with is the hand-held calculator. This
is usually, literally, a black box. You input x-values on the key pad,
say x = 12. You then choose the black box to input this value of x
into. Your calculator is actually made up of a large number of black
boxes—called function keys (Hey, function!). Choose the function key
labeled

x2

and press it – out comes the output. You will see (on your real or
imagined display panel) the value 144.

This is a representation of the black box model.

x −→ x2 −→ x2,
put x = 12,

12 −→ x2 −→ 144.

Input-output, input-output – and that’s the way it works.
Important Point
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